
ipc: An R Package for Inter-process Communication
Ian E. Fellows1

1 Fellows Statistics, http://www.fellstat.com

DOI: 10.21105/joss.00988

Software
• Review
• Repository
• Archive

Submitted: 06 September 2018
Published: 06 November 2018

License
Authors of papers retain copy-
right and release the work un-
der a Creative Commons Attri-
bution 4.0 International License
(CC-BY).

Summary

Asynchronous processing is critical for performing a wide array of tasks, from high perfor-
mance computing to web services. Communication between these disparate asynchronous
processes is often required. The parallel package, which is part of the R computing envi-
ronment (R Core Team, 2018) allows the user to send computations to be executed by idle
worker processes, and the drake package (Landau, 2018a) is a general purpose workflow
manager, where tasks can be executed in parallel. Several packages have been written
to handle the passing of text or binary data between processes (e.g. (Landau, 2018b),
(Csárdi, 2017), and (Armstrong & Ooms, 2017)). Currently the statistical computing
language R provides no built in features to handle interprocess communication between
R processes while they are performing computations. ipc allows you to easily pass R
objects between processes along with an associated signal, and have handler functions
automatically execute them in the receiving process. In ipc, communication is backed
either through the file system or a database connection.

For example, one might signal for the execution of an expression in one thread to set a
variable a.

q <- queue()
q$producer$fireEval(a <- 1)

Then in another thread, this signal can be processed, resulting in the value a being set to
1 in the receiving thread after calling the consume method.

q$consumer$consume()

This package can be applied to high performance computing environments, easily allowing
parallel worker processes to communicate partial results or progress to the main thread.
This functionality can be used to supporting interactive diagnostics and progress for
parallelized functions. Particular focus is paid to the use case of supporting asynchronous
web based user interfaces ((Chang, Cheng, Allaire, Xie, & McPherson, 2018)).

Use in Shiny

When building a Shiny interface that involves long running processes, there are two major
considerations that need to be addressed:

1. The server should not be blocked by the computation.
2. The user should be able to communicate to the computation (e.g. stop it), and the

computation should be able to communicate with the user (e.g. display progress).

Fellows, (2018). ipc: An R Package for Inter-process Communication. Journal of Open Source Software, 3(31), 988. https://doi.org/10.
21105/joss.00988

1

http://www.fellstat.com
https://doi.org/10.21105/joss.00988
https://github.com/openjournals/joss-reviews/issues/988
https://github.com/fellstat/ipc
https://doi.org/10.5281/zenodo.1478139
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.00988
https://doi.org/10.21105/joss.00988

The first item is critical for scalable application development, because if one user blocks
the server, then the UI is unresponsive for all other users of the application. Shiny’s new
async infrastructure addresses this by allowing long running operations to be preformed
in worker processes.

The second item is critical for developing responsive applications. If a user interface is
locked while a computation is proceeding, the user is in the frustrating position of not
being able to cancel it and can’t know how long the computation will take before they’ll be
able to get their interface back. While async solves the first consideration, inter-process
communication is needed to handle the second.

The ipc package provides an easy way to signal between the main thread of your Shiny
application and any workers that you create. Intermediary results of the computation can
be assigned to reactive values, allowing the user to monitor the internal progress of the
operation. In fact, you can send any arbitrary computation from one thread to another
using the fireEval and fireCall methods. Full details are outlined in the package
vignette.

Acknowledgements

We acknowledge the Center for Disease Control, and in particular Ray Shiraishi for their
support in the development of the ipc package.

References

Armstrong, W., & Ooms, J. (2017). Rzmq: R bindings for ’zeromq’. Retrieved from
https://CRAN.R-project.org/package=rzmq

Chang, W., Cheng, J., Allaire, J., Xie, Y., & McPherson, J. (2018). Shiny: Web applica-
tion framework for r. Retrieved from https://CRAN.R-project.org/package=shiny

Csárdi, G. (2017). Liteq: Lightweight portable message queue using ’sqlite’. Retrieved
from https://CRAN.R-project.org/package=liteq

Landau, W. M. (2018a). Drake: A pipeline toolkit for reproducible computation at scale.
Retrieved from https://CRAN.R-project.org/package=drake

Landau, W. M. (2018b). Txtq: A small message queue for parallel processes. Retrieved
from https://CRAN.R-project.org/package=txtq

R Core Team. (2018). R: A language and environment for statistical computing. Vi-
enna, Austria: R Foundation for Statistical Computing. Retrieved from https://www.
R-project.org/

Fellows, (2018). ipc: An R Package for Inter-process Communication. Journal of Open Source Software, 3(31), 988. https://doi.org/10.
21105/joss.00988

2

https://CRAN.R-project.org/package=rzmq
https://CRAN.R-project.org/package=shiny
https://CRAN.R-project.org/package=liteq
https://CRAN.R-project.org/package=drake
https://CRAN.R-project.org/package=txtq
https://www.R-project.org/
https://www.R-project.org/
https://doi.org/10.21105/joss.00988
https://doi.org/10.21105/joss.00988

	Summary
	Use in Shiny

	Acknowledgements
	References

