
Practical machine learning with PyTorch
Jack Atkinson 1¶ and Jim Denholm 1

1 Institute of Computing for Climate Science, University of Cambridge, UK ¶ Corresponding author
DOI: 10.21105/jose.00239

Software

• Review
• Repository
• Archive

Submitted: 28 October 2023
Published: 23 June 2024

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary

In the last decade machine learning (ML) and deep learning (DL)1 have revolutionised
many fields within science, industry, and beyond. Researchers across domains from the
physical sciences to the digital humanities are increasingly looking to leverage these tools
in their research. Many will be experts within their own domains, but will not have
received any training in machine learning.

We have developed, and delivered, a set of materials entitled Practical machine learning
with PyTorch, designed to teach participants how to actually write and run ML code in a
hands-on fashion whilst also illustrating important design considerations.

Statement of need
With the explosion of ML and DL there have been several promising opportunities to
apply these techniques in research. There are notable applications across many fields from
the physical sciences (Carleo et al., 2019), climate science (Kashinath et al., 2021), to the
digital humanities (Gefen et al., 2021).

Whilst there exist many examples of ML code online, it is often in the form of complete
codes to be downloaded, read, and run by the user. These are often missing any discussion of
theory, the development process, or alternative approaches beyond the scope of the specific
example. In contrast, much theoretical ML material addresses high-level concepts without
discussing coding considerations or details of how to actually use popular frameworks to
implement the models.

Many know how ML works in an abstract sense, but will be unfamiliar with lower-level
practicalities such as image transforms and other preprocessing techniques required to
present data to neural networks. They can describe how something works, but would have
no idea where to start if asked to do it. Such practical aspects are ideally learnt through
trial-and-error and hands-on experience.

Many machine learning frameworks are accessed using a Python framework. One such
commonly used framework is PyTorch (Paszke et al., 2019). Researchers are likely to have
experience writing Python code, but not PyTorch.

Learning objectives
The key learning objective from this workshop could be simply summarised as:
“Provide participants with the ability to develop ML models in PyTorch”.

However, there are a few subtleties that we wish to highlight. We go beyond the ability to
blindly run downloaded code to:

1We will use the term ML when talking about both ML and DL in this article

Atkinson, & Denholm. (2024). Practical machine learning with PyTorch. Journal of Open Source Education, 7(76), 239. https://doi.org/10.21105/
jose.00239.

1

https://orcid.org/0000-0001-5001-4812
https://orcid.org/0000-0002-2389-3134
https://doi.org/10.21105/jose.00239
https://github.com/openjournals/jose-reviews/issues/239
https://github.com/Cambridge-ICCS/ml-training-material
https://doi.org/10.5281/zenodo.11401113
https://creativecommons.org/licenses/by/4.0/
https://pytorch.org/
https://doi.org/10.21105/jose.00239
https://doi.org/10.21105/jose.00239


• provide an understanding of the structure of a PyTorch model and ML pipeline,
• introduce the different functionalities PyTorch might provide,
• encourage good research software engineering (RSE) practice, and
• exercise careful consideration and understanding of data used for training ML models.

With regards to specific ML content we cover:

• using ML for both classification and regression,
• artificial neural networks (ANNs) and convolutional neural networks (CNNs), and
• treatment of both tabular and image data.

Teaching materials
All of the teaching materials for this course are available online in a GitHub repository. In
addition we have a GitHub pages site as a central resource to point participants to.

Slides
We have produced two slide decks for the course, both available online and linked from both
the repository and the GitHub pages site. The slides are written in Quarto (Allaire et al.,
2022) markdown and rendered as reveal.js html. Source and instructions on how to render
are included in the repository should others wish to tailor them to their specifications.

The first set of slides covers the machine learning content introducing deep learning and
neural networks through the concept of optimisation and gradient descent which should
be a familiar concept to participants. They then cover the concept of convolutional layers
as a method to map and abstract image-like data for use in a neural network.

The second set of slides contains a discussion of where machine learning has been deployed
in the field of climate science. This includes domain-specific concepts to be aware of in
data-preparation and deployment.

To make the slides available online we use a GitHub action on the repository to render the
slides and publish them to the GitHub pages site whenever there is a push to the main
branch.

Exercises (Jupyter notebooks)
The main material is composed of four Jupyter notebooks, each containing a standalone
exercise that takes participants through the process of developing and training an ML
model, from data preparation and training to running inference. Each exercise is broken
down into a number of subtasks (Jupyter cells).

The code has been packaged using pyproject.toml. This means that installation for use
in the workshop is simplified to cloning the material repository and running:

python -m pip install .

We advise users do this from within a virtual Python environment, instructions for which
are provided under ‘Installation and setup’. From there the Jupyter notebook exercises
are activated from the command line with jupyter notebook.

The first pair of exercises uses Palmer Penguins (Horst et al., 2020), a tabular dataset
of penguin characteristics designed for exploration and visualisation. The source code
associated with the project provides the scaffold to create a torch Dataset from this data.
We do this to remove the burden from participants allowing them to focus on learning the
key features of PyTorch in the early exercises. We review this code during the workshop
to understand its functionality and how data can be prepared for use in training.

Atkinson, & Denholm. (2024). Practical machine learning with PyTorch. Journal of Open Source Education, 7(76), 239. https://doi.org/10.21105/
jose.00239.

2

https://cambridge-iccs.github.io/practical-ml-with-pytorch/
https://quarto.org/
https://revealjs.com/
https://cambridge-iccs.github.io/practical-ml-with-pytorch/slides.html
https://cambridge-iccs.github.io/practical-ml-with-pytorch/applications.html
https://docs.github.com/en/actions
https://jupyter.org/
https://docs.python.org/3/library/venv.html
https://allisonhorst.github.io/palmerpenguins/
https://doi.org/10.21105/jose.00239
https://doi.org/10.21105/jose.00239


1) Penguin Species Classification

Classification of penguin species based on other physical characteristics.
This exercise takes participants through the process of writing an ANN. The tabular data
from the Palmer Penguins dataset is read in and transformed using idiomatic PyTorch
data-loading objects before creating dataloaders and introducing the concepts of training
and validation splits. As part of this exercise we discuss how to prepare a dataset in terms
of identifying unsuitable characteristics that could introduce bias, unintended behaviour, or
spurious results in the learning process. We also introduce one-hot-encoding as a method
to balance loss between different classes.
Data preparation is followed by creating a net from scratch, introducing loss functions and
optimisers, and writing a training and validation loop. Finally, we proceed beyond simply
training the model, completing the exercise by inspecting metrics, visualising results, and
deploying the model to perform inference in a practical manner – a step that is often
missing from ML tutorials.

2) Penguin Regression

Prediction of penguin mass (regression) based on other physical characteristics.
The second exercise is similar to the first, using an ANN to learn from Palmer Penguins
data, but focusses on regression rather than classification. The procedure is largely the
same, with a discussion around how the relevant features of the dataset are different
to those selected in exercise 1. We highlight how appropriate choice of loss (objective)
function allows us to leverage an identical architecture for a different applications – binary-
cross-entropy for classification and mean-squared-error for regression. The TorchTools
package (Denholm, 2023) is also introduced to simplify the process of creating neural nets.

3) MNIST Classification

Classifying handwritten digits from the MNIST database (LeCun, 1998) using a CNN.
MNIST digit classification is a popular choice for those learning ML as it provides a
tangible objective. In this exercise we deal with image data, and how to represent them
as a tensor, and cover various pre-processing techniques and transforms that may be
applied. We also introduce torchvision, and the concepts of using public datasets from
torchvision.datasets and pre-trained models from torchvision.models.

4) Ellipse Regression

Estimating the centroid of an ellipse (regression) from an image using a CNN.
The final exercise uses a custom dataset generated for this workshop. It consists of RGB
images of ellipses along with coordinates of the centre and the major and minor radii.
A similar process to all the other exercises is followed; preparing the data, adapting a
pretrained model, training, and evaluating. This time there is less explicit guidance in the
notebook as participants are familiar with the process and are becoming self-sufficcient.

Throughout the notebooks we provide specific links to the PyTorch documentation where
relevant. This is done to show participants where to find information to aid development
and debugging, and where they can explore other options (optimisers, loss functions,
transformations etc.) beyond those used in the course.

We also provide the notebooks as Google Colab instances allowing users to run the
notebooks entirely from within their browser. This also enables the code to be run on a
GPU (graphics processing unit) to speed up computation in the more complex exercises.
This is particularly useful as the course is typically delivered to participants using laptops,
most of which will not have a GPU. The Colab notebooks are stored in an adjacent branch
of the repository, but can be launched through links in the README or website2.

2A google account is required.

Atkinson, & Denholm. (2024). Practical machine learning with PyTorch. Journal of Open Source Education, 7(76), 239. https://doi.org/10.21105/
jose.00239.

3

https://pytorch.org/vision/stable/index.html
https://pytorch.org/docs/stable/index.html
https://colab.research.google.com/
https://doi.org/10.21105/jose.00239
https://doi.org/10.21105/jose.00239


Solutions
Worked solutions to all of the exercises are provided in the form of completed notebooks
including example output. These are available both in the repository and also as Colab
instances.

Whilst we discuss RSE principles during the course and provide examples, there is often not
time, nor is it conducive, to write docstrings and apply type hints to every function as we
write them. The worked solutions are complete with docstrings (NumPy convention) and
type-hints (checked by mypy). In a similar manner, though we emphasise the importance of
code style and PEP8 during the course, we cannot guarantee that our, or the participants’,
code will be compliant. The worked solutions are linted using pylint and conform to the
black code format, however, allowing introduction of these useful tools.

Content Delivery
The course has been designed to be very flexible in terms of delivery, allowing it to be
adapted to and reused in various setups.

The main aspect we wish to emphasise in delivery is teaching via Jupyter notebooks in
a “code-along” fashion. This helps with engagement, participation, and understanding
(Barba et al., 2022) and is essential, we feel, to having a long-lasting benefit. This approach
slows those leading the course towards the rate at which the participants are working,
and illustrates through errors (whether intentional or not!) that even experienced coders
are human and make mistakes. Such errors can illustrate common pitfalls and provide
an opportunity to include the teaching of debugging approaches. More generally this
approach helps emphasise RSE principles, as participants can see the live application of
these ideas in practise.

In terms of structure we suggest starting the lecture material on ANNs followed by the
first pair of exercises before returning to the CNN lectures and then exercises 3 and 4.
This allows the course to conveniently be broken into two parts (ANNs and CNNs) as, say,
morning and afternoon or day 1 and day 2.

The lectures can vary in length depending on the prior experience of the participants
and we encourage active participation and discussion. We suggest having a chalkboard
on hand to expand on and illustrate concepts such as optimisation, activation functions,
matrix algebra etc. Much like the code-along approach, this slows the lecturer down to
the pace of those taking notes and allows for tailoring of the content to the participants.

Whilst the course can be delivered entirely as a code-along, we have also taught exercises
3 and 4 as a “lab”, with participants working individually or in small groups supported
by floating demonstrators. An advantage of this approach for the CNN exercises is that
it allows participants to explore a variety of PyTorch’s features, e.g. different image
transformations, for themselves.

We also believe that there is sufficient guidance in the notebooks to follow the exercises
alone, and we include a link to a recording of the first workshop. This is, however, no
substitute to in-person delivery where participants can ask questions, and successive
workshops are continually improving.

Teaching experience
This project was originally designed to be taught at two climate science summer schools.
The first time delivered in two half-day workshops, the second as a single one-day workshop.
No plan survives contact with the enemy, and we found is that it is not possible to complete

Atkinson, & Denholm. (2024). Practical machine learning with PyTorch. Journal of Open Source Education, 7(76), 239. https://doi.org/10.21105/
jose.00239.

4

https://peps.python.org/pep-0257/
https://numpydoc.readthedocs.io/en/latest/format.html
https://docs.python.org/3/library/typing.html
https://mypy.readthedocs.io/en/stable/index.html
https://peps.python.org/pep-0008/
https://pylint.readthedocs.io/en/latest/
https://black.readthedocs.io/en/stable/index.html
https://doi.org/10.21105/jose.00239
https://doi.org/10.21105/jose.00239


all of the material in single day. We chose to focus on exercises 1 and 3, with exercises 2
and 4 being “homework”.

Perhaps the most notable improvement following delivery was the addition of Colab
instances of the notebooks. We found participants had often not completed the setup
instructions in advance and subsequently experienced issues running on their local machines
in the workshop. Problems were often specific to the individual and ate up a lot of time
trying to understand polluted environments (xkcd 1987), unfamiliar IDEs and operating
systems etc. to ensure everyone could participate. Participants who have not prepared
and experience issues are now asked to activate the Colab notebooks, thereby not being
left behind nor wasting the time of others.

Another useful lesson was that those with Apple Silicon machines can use the MPS backend
to accelerate training, and without this the CNN exercises are prohibitively slow on these
machines. As a result we added MPS detection to the notebooks alongside CUDA.

We encourage participants to feed experiences back into the project, either via a GitHub
issue or pull request. This allows us to continually learn from delivery and improve the
material for future participants, especially if making instructions clearer or providing
solutions to previously unencountered problems.

Finally we observe that the lecture on domain-specific applications of ML was effective
in tying the workshop together and encouraging participants to consider how they might
utilise ML in their own work. This session was followed by good questions and discussion,
and illustrates how to apply what has been learnt along with domain specific things to be
aware of. We encourage anyone using this material to tailor this final set of slides to their
own domain.

Acknowledgments
We thank anyone who has made a contribution to these materials, however small, assisted
in code review for us, or helped as demonstrators on the course.

The Institute of Computing for Climate Science received support through Schmidt Sciences.

References

Allaire, J. J., Teague, C., Scheidegger, C., Xie, Y., & Dervieux, C. (2022). Quarto (Version
1.2). https://doi.org/10.5281/zenodo.5960048

Barba, L. A., Barker, L. J., Blank, D. S., Brown, J., Downey, A., George, T., Heagy,
L. J., Mandli, K., Moore, J. K., Lippert, D., Niemeyer, K., Watkins, R., West, R.,
Wickes, E., Willling, C., & Zingale, M. (2022). Teaching and Learning with Jupyter.
https://doi.org/10.6084/m9.figshare.19608801.v1

Carleo, G., Cirac, I., Cranmer, K., Daudet, L., Schuld, M., Tishby, N., Vogt-Maranto,
L., & Zdeborová, L. (2019). Machine learning and the physical sciences. Reviews of
Modern Physics, 91(4). https://doi.org/10.1103/RevModPhys.91.045002

Denholm, J. (2023). TorchTools. https://github.com/jdenholm/TorchTools

Gefen, A., Saint-Raymond, L., & Venturini, T. (2021). AI for digital humanities and
computational social sciences. Reflections on Artificial Intelligence for Humanity,
191–202. https://doi.org/10.1007/978-3-030-69128-8_12

Horst, A. M., Hill, A. P., & Gorman, K. B. (2020). palmerpenguins: Palmer Archipelago
(Antarctica) penguin data. https://doi.org/10.5281/zenodo.3960218

Atkinson, & Denholm. (2024). Practical machine learning with PyTorch. Journal of Open Source Education, 7(76), 239. https://doi.org/10.21105/
jose.00239.

5

https://xkcd.com/1987/
https://pytorch.org/docs/stable/notes/mps.html
https://iccs.cam.ac.uk/
https://www.schmidtsciences.org/
https://doi.org/10.5281/zenodo.5960048
https://doi.org/10.6084/m9.figshare.19608801.v1
https://doi.org/10.1103/RevModPhys.91.045002
https://github.com/jdenholm/TorchTools
https://doi.org/10.1007/978-3-030-69128-8_12
https://doi.org/10.5281/zenodo.3960218
https://doi.org/10.21105/jose.00239
https://doi.org/10.21105/jose.00239


Kashinath, K., Mustafa, M., Albert, A., Wu, J., Jiang, C., Esmaeilzadeh, S., Azizzade-
nesheli, K., Wang, R., Chattopadhyay, A., Singh, A., & others. (2021). Physics-
informed machine learning: Case studies for weather and climate modelling. Philo-
sophical Transactions of the Royal Society A, 379, 20200093. https://doi.org/10.1098/
rsta.2020.0093

LeCun, Y. (1998). The MNIST database of handwritten digits. http://yann.lecun.com/
exdb/mnist/

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin,
Z., Gimelshein, N., Antiga, L., & others. (2019). Pytorch: An imperative style,
high-performance deep learning library. Advances in Neural Information Processing
Systems, 32.

Atkinson, & Denholm. (2024). Practical machine learning with PyTorch. Journal of Open Source Education, 7(76), 239. https://doi.org/10.21105/
jose.00239.

6

https://doi.org/10.1098/rsta.2020.0093
https://doi.org/10.1098/rsta.2020.0093
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://doi.org/10.21105/jose.00239
https://doi.org/10.21105/jose.00239

	Summary
	Statement of need
	Learning objectives
	Teaching materials
	Slides
	Exercises (Jupyter notebooks)
	1) Penguin Species Classification
	2) Penguin Regression
	3) MNIST Classification
	4) Ellipse Regression

	Solutions

	Content Delivery
	Teaching experience
	Acknowledgments
	References

