In this report, we extract information about published JOSS papers
and generate
graphics as well as a summary table that can be downloaded and used for
further analyses.
suppressPackageStartupMessages({
library(tibble)
library(rcrossref)
library(dplyr)
library(tidyr)
library(ggplot2)
library(lubridate)
library(gh)
library(purrr)
library(jsonlite)
library(DT)
library(plotly)
library(citecorp)
library(readr)
library(rworldmap)
library(gt)
library(stringr)
library(openalexR)
})
## Keep track of the source of each column
source_track <- c()
## Determine whether to add a caption with today's date to the (non-interactive) plots
add_date_caption <- TRUE
if (add_date_caption) {
dcap <- lubridate::today()
} else {
dcap <- ""
}
## Get list of countries and populations (2022) from the rworldmap/gt packages
data("countrySynonyms")
country_names <- countrySynonyms |>
select(-ID) |>
pivot_longer(names_to = "tmp", values_to = "name", -ISO3) |>
filter(name != "") |>
select(-tmp)
## Country population data from the World Bank (https://data.worldbank.org/indicator/SP.POP.TOTL),
## distributed via the gt R package
country_populations <- countrypops |>
filter(year == 2022)
## Read archived version of summary data frame, to use for filling in
## information about software repositories (due to limit on API requests)
## Sort by the date when software repo info was last obtained
papers_archive <- readRDS(gzcon(url("https://github.com/openjournals/joss-analytics/blob/gh-pages/joss_submission_analytics.rds?raw=true"))) %>%
dplyr::arrange(!is.na(repo_info_obtained), repo_info_obtained)
## Similarly for citation analysis, to avoid having to pull down the
## same information multiple times
citations_archive <- readr::read_delim(
url("https://github.com/openjournals/joss-analytics/blob/gh-pages/joss_submission_citations.tsv?raw=true"),
col_types = cols(.default = "c"), col_names = TRUE,
delim = "\t")
We get the information about published JOSS papers from Crossref,
using the rcrossref
R package. The openalexR
R
package is used to extract citation counts from OpenAlex.
## First check how many records there are in Crossref
issn <- "2475-9066"
joss_details <- rcrossref::cr_journals(issn, works = FALSE) %>%
pluck("data")
joss_details$total_dois
## [1] 2830
## Pull down all records from Crossref
papers <- rcrossref::cr_journals(issn, works = TRUE, cursor = "*",
cursor_max = joss_details$total_dois * 2) %>%
pluck("data")
## Only keep articles
papers <- papers %>%
dplyr::filter(type == "journal-article")
dim(papers)
## [1] 2832 28
dim(papers %>% distinct())
## [1] 2832 28
## A few papers don't have alternative.ids - generate them from the DOI
noaltid <- which(is.na(papers$alternative.id))
papers$alternative.id[noaltid] <- papers$doi[noaltid]
## Get citation info from Crossref and merge with paper details
# cit <- rcrossref::cr_citation_count(doi = papers$alternative.id)
# papers <- papers %>% dplyr::left_join(
# cit %>% dplyr::rename(citation_count = count),
# by = c("alternative.id" = "doi")
# )
## Remove one duplicated paper
papers <- papers %>% dplyr::filter(alternative.id != "10.21105/joss.00688")
dim(papers)
## [1] 2831 28
dim(papers %>% distinct())
## [1] 2831 28
papers$alternative.id[duplicated(papers$alternative.id)]
## character(0)
source_track <- c(source_track,
structure(rep("crossref", ncol(papers)),
names = colnames(papers)))
## Get info from openalexR and merge with paper details
## Helper function to extract countries from affiliations. Note that this
## information is not available for all papers.
.get_countries <- function(df, wh = "first") {
if (length(df) == 1 && is.na(df)) {
""
} else {
if (wh == "first") {
## Only first affiliation for each author
tmp <- df |>
dplyr::filter(!duplicated(au_id) & !is.na(institution_country_code)) |>
pull(institution_country_code)
} else {
## All affiliations
tmp <- df |>
dplyr::filter(!is.na(institution_country_code)) |>
pull(institution_country_code)
}
if (length(tmp) > 0) {
tmp |>
unique() |>
paste(collapse = ";")
} else {
""
}
}
}
oa <- oa_fetch(entity = "works",
primary_location.source.id = "s4210214273") |>
mutate(affil_countries_all = vapply(author, .get_countries, "", wh = "all"),
affil_countries_first = vapply(author, .get_countries, "", wh = "first"))
## Warning in oa_request(oa_query(filter = filter_i, multiple_id = multiple_id, :
## The following work(s) have truncated lists of authors: W3005984879.
## Query each work separately by its identifier to get full list of authors.
## For example:
## lapply(c("W3005984879"), \(x) oa_fetch(identifier = x))
## Details at https://docs.openalex.org/api-entities/authors/limitations.
dim(oa)
## [1] 2835 40
length(unique(oa$doi))
## [1] 2835
papers <- papers %>% dplyr::left_join(
oa %>% dplyr::mutate(alternative.id = sub("https://doi.org/", "", doi)) %>%
dplyr::select(alternative.id, cited_by_count, id,
affil_countries_all, affil_countries_first) %>%
dplyr::rename(citation_count = cited_by_count,
openalex_id = id),
by = "alternative.id"
)
dim(papers)
## [1] 2831 32
dim(papers %>% distinct())
## [1] 2831 32
source_track <- c(source_track,
structure(rep("OpenAlex", length(setdiff(colnames(papers),
names(source_track)))),
names = setdiff(colnames(papers), names(source_track))))
For each published paper, we use the JOSS API to get information about pre-review and review issue numbers, corresponding software repository etc.
joss_api <- list()
p <- 1
a0 <- NULL
a <- jsonlite::fromJSON(
url(paste0("https://joss.theoj.org/papers/published.json?page=", p)),
simplifyDataFrame = FALSE
)
while (length(a) > 0 && !identical(a, a0)) {
joss_api <- c(joss_api, a)
p <- p + 1
a0 <- a
a <- tryCatch({
jsonlite::fromJSON(
url(paste0("https://joss.theoj.org/papers/published.json?page=", p)),
simplifyDataFrame = FALSE
)},
error = function(e) return(numeric(0))
)
}
joss_api <- do.call(dplyr::bind_rows, lapply(joss_api, function(w) {
data.frame(api_title = w$title,
api_state = w$state,
editor = paste(w$editor, collapse = ","),
reviewers = paste(w$reviewers, collapse = ","),
nbr_reviewers = length(w$reviewers),
repo_url = w$software_repository,
review_issue_id = sub("https://github.com/openjournals/joss-reviews/issues/",
"", w$paper_review),
doi = w$doi,
prereview_issue_id = ifelse(!is.null(w$meta_review_issue_id),
w$meta_review_issue_id, NA_integer_),
languages = gsub(", ", ",", w$languages),
archive_doi = w$software_archive)
}))
dim(joss_api)
## [1] 2832 11
dim(joss_api %>% distinct())
## [1] 2832 11
joss_api$repo_url[duplicated(joss_api$repo_url)]
## [1] "https://gitlab.com/mauricemolli/petitRADTRANS"
## [2] "https://github.com/idaholab/moose"
## [3] "https://gitlab.com/libreumg/dataquier.git"
## [4] "https://github.com/idaholab/moose"
## [5] "https://github.com/dynamicslab/pysindy"
## [6] "https://github.com/landlab/landlab"
## [7] "https://github.com/landlab/landlab"
## [8] "https://github.com/symmy596/SurfinPy"
## [9] "https://github.com/landlab/landlab"
## [10] "https://github.com/pvlib/pvlib-python"
## [11] "https://github.com/mlpack/mlpack"
## [12] "https://github.com/julia-wrobel/registr"
## [13] "https://github.com/barbagroup/pygbe"
papers <- papers %>% dplyr::left_join(joss_api, by = c("alternative.id" = "doi"))
dim(papers)
## [1] 2831 42
dim(papers %>% distinct())
## [1] 2831 42
papers$repo_url[duplicated(papers$repo_url)]
## [1] "https://github.com/landlab/landlab"
## [2] "https://github.com/landlab/landlab"
## [3] "https://github.com/idaholab/moose"
## [4] "https://github.com/idaholab/moose"
## [5] "https://github.com/dynamicslab/pysindy"
## [6] "https://github.com/barbagroup/pygbe"
## [7] "https://github.com/julia-wrobel/registr"
## [8] "https://github.com/pvlib/pvlib-python"
## [9] "https://github.com/symmy596/SurfinPy"
## [10] "https://github.com/landlab/landlab"
## [11] "https://gitlab.com/libreumg/dataquier.git"
## [12] "https://github.com/mlpack/mlpack"
## [13] "https://gitlab.com/mauricemolli/petitRADTRANS"
source_track <- c(source_track,
structure(rep("JOSS_API", length(setdiff(colnames(papers),
names(source_track)))),
names = setdiff(colnames(papers), names(source_track))))
From each pre-review and review issue, we extract information about review times and assigned labels.
## Pull down info on all issues in the joss-reviews repository
issues <- gh("/repos/openjournals/joss-reviews/issues",
.limit = 15000, state = "all")
## From each issue, extract required information
iss <- do.call(dplyr::bind_rows, lapply(issues, function(i) {
data.frame(title = i$title,
number = i$number,
state = i$state,
opened = i$created_at,
closed = ifelse(!is.null(i$closed_at),
i$closed_at, NA_character_),
ncomments = i$comments,
labels = paste(setdiff(
vapply(i$labels, getElement,
name = "name", character(1L)),
c("review", "pre-review", "query-scope", "paused")),
collapse = ","))
}))
## Split into REVIEW, PRE-REVIEW, and other issues (the latter category
## is discarded)
issother <- iss %>% dplyr::filter(!grepl("\\[PRE REVIEW\\]", title) &
!grepl("\\[REVIEW\\]", title))
dim(issother)
## [1] 157 7
head(issother)
## title
## 1 Move away from unpaired parentheses in reviewer_checklist.md
## 2 :warning: [An error happened when generating the pdf](https://github.com/openjournals/joss-papers/actions/runs/10690440746?check_suite_focus=true).
## 3 [JOSS Review] Small typo in paper
## 4 hakan
## 5 Add a synthetic dataset
## 6 # Post-Review Checklist for Editor and Authors
## number state opened closed ncomments labels
## 1 7270 closed 2024-09-23T15:05:45Z 2024-10-09T12:50:41Z 0
## 2 7177 closed 2024-09-04T12:56:12Z 2024-09-04T12:56:14Z 1
## 3 6982 closed 2024-07-13T23:30:13Z 2024-07-13T23:30:15Z 1
## 4 6975 closed 2024-07-12T16:46:52Z 2024-07-12T16:46:54Z 1
## 5 6952 closed 2024-07-02T20:56:20Z 2024-07-02T20:56:22Z 1
## 6 6924 closed 2024-06-24T10:12:54Z 2024-06-24T10:12:57Z 1
## For REVIEW issues, generate the DOI of the paper from the issue number
getnbrzeros <- function(s) {
paste(rep(0, 5 - nchar(s)), collapse = "")
}
issrev <- iss %>% dplyr::filter(grepl("\\[REVIEW\\]", title)) %>%
dplyr::mutate(nbrzeros = purrr::map_chr(number, getnbrzeros)) %>%
dplyr::mutate(alternative.id = paste0("10.21105/joss.",
nbrzeros,
number)) %>%
dplyr::select(-nbrzeros) %>%
dplyr::mutate(title = gsub("\\[REVIEW\\]: ", "", title)) %>%
dplyr::rename_at(vars(-alternative.id), ~ paste0("review_", .))
## For pre-review and review issues, respectively, get the number of
## issues closed each month, and the number of those that have the
## 'rejected' label
review_rejected <- iss %>%
dplyr::filter(grepl("\\[REVIEW\\]", title)) %>%
dplyr::filter(!is.na(closed)) %>%
dplyr::mutate(closedmonth = lubridate::floor_date(as.Date(closed), "month")) %>%
dplyr::group_by(closedmonth) %>%
dplyr::summarize(nbr_issues_closed = length(labels),
nbr_rejections = sum(grepl("rejected", labels))) %>%
dplyr::mutate(itype = "review")
prereview_rejected <- iss %>%
dplyr::filter(grepl("\\[PRE REVIEW\\]", title)) %>%
dplyr::filter(!is.na(closed)) %>%
dplyr::mutate(closedmonth = lubridate::floor_date(as.Date(closed), "month")) %>%
dplyr::group_by(closedmonth) %>%
dplyr::summarize(nbr_issues_closed = length(labels),
nbr_rejections = sum(grepl("rejected", labels))) %>%
dplyr::mutate(itype = "pre-review")
all_rejected <- dplyr::bind_rows(review_rejected, prereview_rejected)
## For PRE-REVIEW issues, add information about the corresponding REVIEW
## issue number
isspre <- iss %>% dplyr::filter(grepl("\\[PRE REVIEW\\]", title)) %>%
dplyr::filter(!grepl("withdrawn", labels)) %>%
dplyr::filter(!grepl("rejected", labels))
## Some titles have multiple pre-review issues. In these cases, keep the latest
isspre <- isspre %>% dplyr::arrange(desc(number)) %>%
dplyr::filter(!duplicated(title)) %>%
dplyr::mutate(title = gsub("\\[PRE REVIEW\\]: ", "", title)) %>%
dplyr::rename_all(~ paste0("prerev_", .))
papers <- papers %>% dplyr::left_join(issrev, by = "alternative.id") %>%
dplyr::left_join(isspre, by = c("prereview_issue_id" = "prerev_number")) %>%
dplyr::mutate(prerev_opened = as.Date(prerev_opened),
prerev_closed = as.Date(prerev_closed),
review_opened = as.Date(review_opened),
review_closed = as.Date(review_closed)) %>%
dplyr::mutate(days_in_pre = prerev_closed - prerev_opened,
days_in_rev = review_closed - review_opened,
to_review = !is.na(review_opened))
dim(papers)
## [1] 2831 58
dim(papers %>% distinct())
## [1] 2831 58
source_track <- c(source_track,
structure(rep("joss-github", length(setdiff(colnames(papers),
names(source_track)))),
names = setdiff(colnames(papers), names(source_track))))
## Reorder so that software repositories that were interrogated longest
## ago are checked first
tmporder <- order(match(papers$alternative.id, papers_archive$alternative.id),
na.last = FALSE)
software_urls <- papers$repo_url[tmporder]
software_urls[duplicated(software_urls)]
## [1] "https://gitlab.com/libreumg/dataquier.git"
## [2] "https://gitlab.com/mauricemolli/petitRADTRANS"
## [3] "https://github.com/julia-wrobel/registr"
## [4] "https://github.com/idaholab/moose"
## [5] "https://github.com/idaholab/moose"
## [6] "https://github.com/dynamicslab/pysindy"
## [7] "https://github.com/mlpack/mlpack"
## [8] "https://github.com/landlab/landlab"
## [9] "https://github.com/landlab/landlab"
## [10] "https://github.com/barbagroup/pygbe"
## [11] "https://github.com/symmy596/SurfinPy"
## [12] "https://github.com/pvlib/pvlib-python"
## [13] "https://github.com/landlab/landlab"
is_github <- grepl("github", software_urls)
length(is_github)
## [1] 2831
sum(is_github)
## [1] 2674
software_urls[!is_github]
## [1] "https://gitlab.mpikg.mpg.de/curcuraci/bmiptools"
## [2] "https://gitlab.com/utopia-project/utopia"
## [3] "https://gitlab.dune-project.org/dorie/dorie"
## [4] "https://gitlab.com/mauricemolli/petitRADTRANS"
## [5] "https://gitlab.kuleuven.be/ITSCreaLab/public-toolboxes/dyntapy"
## [6] "https://gitlab.inria.fr/bramas/tbfmm"
## [7] "https://gitlab.com/fduchate/predihood"
## [8] "https://jugit.fz-juelich.de/compflu/swalbe.jl/"
## [9] "https://gitlab.com/moerman1/fhi-cc4s"
## [10] "https://gitlab.com/ENKI-portal/ThermoCodegen"
## [11] "https://gitlab.com/jtagusari/hrisk-noisemodelling"
## [12] "https://gitlab.com/mmartin-lagarde/exonoodle-exoplanets/-/tree/master/"
## [13] "https://bitbucket.org/meg/cbcbeat"
## [14] "https://gitlab.pasteur.fr/vlegrand/ROCK"
## [15] "https://bitbucket.org/orionmhdteam/orion2_release1/src/master/"
## [16] "https://gitlab.com/dlr-ve/esy/remix/framework"
## [17] "https://gitlab.com/dmt-development/dmt-core"
## [18] "https://gitlab.com/wpettersson/kep_solver"
## [19] "https://git.ligo.org/asimov/asimov"
## [20] "https://gitlab.com/pyFBS/pyFBS"
## [21] "https://gitlab.com/myqueue/myqueue"
## [22] "https://savannah.nongnu.org/projects/complot/"
## [23] "https://gitlab.com/emd-dev/emd"
## [24] "https://codebase.helmholtz.cloud/mussel/netlogo-northsea-species.git"
## [25] "https://gitlab.com/bonsamurais/bonsai/util/ipcc"
## [26] "https://gitlab.com/cerfacs/batman"
## [27] "https://gitlab.com/ffaucher/hawen"
## [28] "https://gitlab.inria.fr/miet/miet"
## [29] "https://gitlab.com/jason-rumengan/pyarma"
## [30] "https://bitbucket.org/cardosan/brightway2-temporalis"
## [31] "https://gitlab.com/manchester_qbi/manchester_qbi_public/madym_cxx/"
## [32] "http://mutabit.com/repos.fossil/grafoscopio/"
## [33] "https://gitlab.com/utopia-project/dantro"
## [34] "https://bitbucket.org/hammurabicode/hamx"
## [35] "https://bitbucket.org/manuela_s/hcp/"
## [36] "https://gite.lirmm.fr/doccy/RedOak"
## [37] "https://gitlab.com/petsc/petsc"
## [38] "https://gitlab.inria.fr/bcoye/game-engine-scheduling-simulation"
## [39] "https://gitlab.com/fibreglass/pivc"
## [40] "https://gitlab.com/culturalcartography/text2map"
## [41] "https://gitlab.com/gdetor/genetic_alg"
## [42] "https://bitbucket.org/berkeleylab/hardware-control/src/main/"
## [43] "https://gitlab.com/akantu/akantu"
## [44] "https://gitlab.com/cosmograil/starred"
## [45] "https://gitlab.com/ProjectRHEA/flowsolverrhea"
## [46] "https://gitlab.dune-project.org/copasi/dune-copasi"
## [47] "https://gricad-gitlab.univ-grenoble-alpes.fr/ttk/spam/"
## [48] "https://gitlab.com/davidwoodburn/itrm"
## [49] "https://gitlab.com/libreumg/dataquier.git"
## [50] "https://gitlab.gwdg.de/mpievolbio-it/crbhits"
## [51] "https://gitlab.ethz.ch/holukas/dyco-dynamic-lag-compensation"
## [52] "https://bitbucket.org/rram/dvrlib/src/joss/"
## [53] "https://gitlab.com/cosapp/cosapp"
## [54] "https://gitlab.com/dlr-dw/ontocode"
## [55] "https://bitbucket.org/bmskinner/nuclear_morphology"
## [56] "https://gitlab.com/marinvaders/marinvaders"
## [57] "https://gitlab.com/project-dare/dare-platform"
## [58] "https://earth.bsc.es/gitlab/wuruchi/autosubmitreact"
## [59] "https://gitlab.com/tum-ciip/elsa"
## [60] "https://plmlab.math.cnrs.fr/lmrs/statistique/smmR"
## [61] "https://gitlab.com/sissopp_developers/sissopp"
## [62] "https://framagit.org/GustaveCoste/off-product-environmental-impact/"
## [63] "https://bitbucket.org/sbarbot/motorcycle/src/master/"
## [64] "https://gitlab.com/binary_c/binary_c-python/"
## [65] "https://gitlab.com/InspectorCell/inspectorcell"
## [66] "https://gitlab.com/jesseds/apav"
## [67] "https://git.rwth-aachen.de/ants/sensorlab/imea"
## [68] "https://bitbucket.org/clhaley/Multitaper.jl"
## [69] "https://gitlab.com/vibes-developers/vibes"
## [70] "https://gitlab.com/dlr-ve/esy/amiris/amiris"
## [71] "https://gitlab.com/mantik-ai/mantik"
## [72] "https://gitlab.inria.fr/melissa/melissa"
## [73] "https://gitlab.com/sails-dev/sails"
## [74] "https://gitlab.com/qc-devs/aqcnes"
## [75] "https://forgemia.inra.fr/pherosensor/pherosensor-toolbox"
## [76] "https://gitlab.uliege.be/smart_grids/public/gboml"
## [77] "https://gitlab.com/picos-api/picos"
## [78] "https://gitlab.com/remram44/taguette"
## [79] "https://gitlab.com/QComms/cqptoolkit"
## [80] "https://gitlab.com/thartwig/asloth"
## [81] "https://bitbucket.org/mpi4py/mpi4py-fft"
## [82] "https://gitlab.kitware.com/LBM/lattice-boltzmann-solver"
## [83] "https://gitlab.com/eidheim/Simple-Web-Server"
## [84] "https://bitbucket.org/basicsums/basicsums"
## [85] "https://gitlab.com/toposens/public/ros-packages"
## [86] "https://bitbucket.org/cdegroot/wediff"
## [87] "https://code.usgs.gov/umesc/quant-ecology/fishstan/"
## [88] "https://gitlab.com/bioeconomy/forobs/biotrade/"
## [89] "https://gitlab.com/sigcorr/sigcorr"
## [90] "https://gitlab.com/dsbowen/conditional-inference"
## [91] "https://framagit.org/GustaveCoste/eldam"
## [92] "https://gitlab.com/soleil-data-treatment/soleil-software-projects/remote-desktop"
## [93] "https://www.idpoisson.fr/fullswof/"
## [94] "https://gitlab.inria.fr/azais/treex"
## [95] "https://bitbucket.org/glotzer/rowan"
## [96] "https://git.geomar.de/digital-earth/dasf/dasf-messaging-python"
## [97] "https://gricad-gitlab.univ-grenoble-alpes.fr/deformvis/insarviz"
## [98] "https://gitlab.com/cracklet/cracklet.git"
## [99] "https://gitlab.ifremer.fr/resourcecode/resourcecode"
## [100] "https://gitlab.com/pvst/asi"
## [101] "https://bitbucket.org/sciencecapsule/sciencecapsule"
## [102] "https://gitlab.com/fame-framework/fame-io"
## [103] "https://gitlab.com/fame-framework/fame-core"
## [104] "https://gitlab.com/lheea/CN-AeroModels"
## [105] "https://gitlab.com/chaver/choco-mining"
## [106] "https://gitlab.com/drti/basic-tools"
## [107] "https://gitlab.com/ags-data-format-wg/ags-python-library"
## [108] "https://gitlab.com/cosmograil/PyCS3"
## [109] "https://bitbucket.org/likask/mofem-cephas"
## [110] "https://bitbucket.org/miketuri/perl-spice-sim-seus/"
## [111] "https://bitbucket.org/ocellarisproject/ocellaris"
## [112] "https://gitlab.inria.fr/mosaic/bvpy"
## [113] "https://bitbucket.org/berkeleylab/esdr-pygdh/"
## [114] "https://sourceforge.net/p/mcapl/mcapl_code/ci/master/tree/"
## [115] "https://gitlab.com/cmbm-ethz/pourbaix-diagrams"
## [116] "https://gitlab.com/dlr-ve/autumn/"
## [117] "https://gitlab.com/moorepants/skijumpdesign"
## [118] "https://gitlab.com/davidtourigny/dynamic-fba"
## [119] "https://git.iws.uni-stuttgart.de/tools/frackit"
## [120] "https://gitlab.com/materials-modeling/wulffpack"
## [121] "https://gitlab.com/MartinBeseda/sa-oo-vqe-qiskit.git"
## [122] "https://gitlab.com/habermann_lab/phasik"
## [123] "https://gitlab.com/LMSAL_HUB/aia_hub/aiapy"
## [124] "https://bitbucket.org/dolfin-adjoint/pyadjoint"
## [125] "https://bitbucket.org/cmutel/brightway2"
## [126] "https://git.ufz.de/despot/pysewer/"
## [127] "https://c4science.ch/source/tamaas/"
## [128] "https://bitbucket.org/mituq/muq2.git"
## [129] "https://doi.org/10.17605/OSF.IO/3DS6A"
## [130] "https://gitlab.eudat.eu/coccon-kit/proffastpylot"
## [131] "https://gitlab.ruhr-uni-bochum.de/reichp2y/proppy"
## [132] "https://forgemia.inra.fr/migale/easy16s"
## [133] "https://gitlab.com/tesch1/cppduals"
## [134] "https://gitlab.com/geekysquirrel/bigx"
## [135] "https://bitbucket.org/robmoss/particle-filter-for-python/"
## [136] "https://gitlab.com/pythia-uq/pythia"
## [137] "https://bitbucket.org/cloopsy/android/"
## [138] "https://gitlab.com/celliern/scikit-fdiff/"
## [139] "https://gitlab.com/tue-umphy/software/parmesan"
## [140] "https://bitbucket.org/dghoshal/frieda"
## [141] "https://gitlab.com/free-astro/siril"
## [142] "https://gitlab.com/gims-developers/gims"
## [143] "https://gitlab.com/permafrostnet/teaspoon"
## [144] "https://gitlab.com/programgreg/tagginglatencyestimator"
## [145] "https://git.mpib-berlin.mpg.de/castellum/castellum"
## [146] "https://gitlab.com/dglaeser/fieldcompare"
## [147] "https://gitlab.com/dlr-ve/esy/sfctools/framework/"
## [148] "https://gitlab.com/robizzard/libcdict"
## [149] "https://gitlab.awi.de/sicopolis/sicopolis"
## [150] "https://gitlab.com/energyincities/besos/"
## [151] "https://gitlab.com/costrouc/pysrim"
## [152] "https://gitlab.com/libreumg/dataquier.git"
## [153] "https://gitlab.com/datafold-dev/datafold/"
## [154] "https://gitlab.com/materials-modeling/calorine"
## [155] "https://gitlab.com/mauricemolli/petitRADTRANS"
## [156] "https://gitlab.com/ampere2/metalwalls"
## [157] "https://gitlab.com/open-darts/open-darts"
df <- do.call(dplyr::bind_rows, lapply(unique(software_urls[is_github]), function(u) {
u0 <- gsub("^http://", "https://", gsub("\\.git$", "", gsub("/$", "", u)))
if (grepl("/tree/", u0)) {
u0 <- strsplit(u0, "/tree/")[[1]][1]
}
if (grepl("/blob/", u0)) {
u0 <- strsplit(u0, "/blob/")[[1]][1]
}
info <- try({
gh(gsub("(https://)?(www.)?github.com/", "/repos/", u0))
})
languages <- try({
gh(paste0(gsub("(https://)?(www.)?github.com/", "/repos/", u0), "/languages"),
.limit = 500)
})
topics <- try({
gh(paste0(gsub("(https://)?(www.)?github.com/", "/repos/", u0), "/topics"),
.accept = "application/vnd.github.mercy-preview+json", .limit = 500)
})
contribs <- try({
gh(paste0(gsub("(https://)?(www.)?github.com/", "/repos/", u0), "/contributors"),
.limit = 500)
})
if (!is(info, "try-error") && length(info) > 1) {
if (!is(contribs, "try-error")) {
if (length(contribs) == 0) {
repo_nbr_contribs <- repo_nbr_contribs_2ormore <- NA_integer_
} else {
repo_nbr_contribs <- length(contribs)
repo_nbr_contribs_2ormore <- sum(vapply(contribs, function(x) x$contributions >= 2, NA_integer_))
if (is.na(repo_nbr_contribs_2ormore)) {
print(contribs)
}
}
} else {
repo_nbr_contribs <- repo_nbr_contribs_2ormore <- NA_integer_
}
if (!is(languages, "try-error")) {
if (length(languages) == 0) {
repolang <- ""
} else {
repolang <- paste(paste(names(unlist(languages)),
unlist(languages), sep = ":"), collapse = ",")
}
} else {
repolang <- ""
}
if (!is(topics, "try-error")) {
if (length(topics$names) == 0) {
repotopics <- ""
} else {
repotopics <- paste(unlist(topics$names), collapse = ",")
}
} else {
repotopics <- ""
}
data.frame(repo_url = u,
repo_created = info$created_at,
repo_updated = info$updated_at,
repo_pushed = info$pushed_at,
repo_nbr_stars = info$stargazers_count,
repo_language = ifelse(!is.null(info$language),
info$language, NA_character_),
repo_languages_bytes = repolang,
repo_topics = repotopics,
repo_license = ifelse(!is.null(info$license),
info$license$key, NA_character_),
repo_nbr_contribs = repo_nbr_contribs,
repo_nbr_contribs_2ormore = repo_nbr_contribs_2ormore
)
} else {
NULL
}
})) %>%
dplyr::mutate(repo_created = as.Date(repo_created),
repo_updated = as.Date(repo_updated),
repo_pushed = as.Date(repo_pushed)) %>%
dplyr::distinct() %>%
dplyr::mutate(repo_info_obtained = lubridate::today())
if (length(unique(df$repo_url)) != length(df$repo_url)) {
print(length(unique(df$repo_url)))
print(length(df$repo_url))
print(df$repo_url[duplicated(df$repo_url)])
}
stopifnot(length(unique(df$repo_url)) == length(df$repo_url))
dim(df)
## [1] 2031 12
## For papers not in df (i.e., for which we didn't get a valid response
## from the GitHub API query), use information from the archived data frame
dfarchive <- papers_archive %>%
dplyr::select(colnames(df)[colnames(df) %in% colnames(papers_archive)]) %>%
dplyr::filter(!(repo_url %in% df$repo_url)) %>%
dplyr::arrange(desc(repo_info_obtained)) %>%
dplyr::filter(!duplicated(repo_url))
head(dfarchive)
## # A tibble: 6 × 12
## repo_url repo_created repo_updated repo_pushed repo_nbr_stars repo_language
## <chr> <date> <date> <date> <int> <chr>
## 1 https://gi… 2014-02-24 2025-01-08 2024-03-08 3613 Python
## 2 https://gi… 2019-09-28 2022-10-19 2023-05-05 3 Python
## 3 https://gi… 2019-09-07 2024-12-17 2024-12-17 66 Python
## 4 https://gi… 2020-09-08 2024-11-19 2022-03-24 14 Python
## 5 https://gi… 2014-05-09 2025-01-03 2025-01-08 364 Python
## 6 https://gi… 2019-09-16 2024-12-30 2025-01-07 116 Python
## # ℹ 6 more variables: repo_languages_bytes <chr>, repo_topics <chr>,
## # repo_license <chr>, repo_nbr_contribs <int>,
## # repo_nbr_contribs_2ormore <int>, repo_info_obtained <date>
dim(dfarchive)
## [1] 786 12
df <- dplyr::bind_rows(df, dfarchive)
stopifnot(length(unique(df$repo_url)) == length(df$repo_url))
dim(df)
## [1] 2817 12
papers <- papers %>% dplyr::left_join(df, by = "repo_url")
dim(papers)
## [1] 2831 69
source_track <- c(source_track,
structure(rep("sw-github", length(setdiff(colnames(papers),
names(source_track)))),
names = setdiff(colnames(papers), names(source_track))))
## Convert publication date to Date format
## Add information about the half year (H1, H2) of publication
## Count number of authors
papers <- papers %>% dplyr::select(-reference, -license, -link) %>%
dplyr::mutate(published.date = as.Date(published.print)) %>%
dplyr::mutate(
halfyear = paste0(year(published.date),
ifelse(month(published.date) <= 6, "H1", "H2"))
) %>% dplyr::mutate(
halfyear = factor(halfyear,
levels = paste0(rep(sort(unique(year(published.date))),
each = 2), c("H1", "H2")))
) %>% dplyr::mutate(nbr_authors = vapply(author, function(a) nrow(a), NA_integer_))
dim(papers)
## [1] 2831 69
dupidx <- which(papers$alternative.id %in% papers$alternative.id[duplicated(papers)])
papers[dupidx, ] %>% arrange(alternative.id) %>% head(n = 10)
## # A tibble: 0 × 69
## # ℹ 69 variables: alternative.id <chr>, container.title <chr>, created <chr>,
## # deposited <chr>, published.print <chr>, doi <chr>, indexed <chr>,
## # issn <chr>, issue <chr>, issued <chr>, member <chr>, page <chr>,
## # prefix <chr>, publisher <chr>, score <chr>, source <chr>,
## # reference.count <chr>, references.count <chr>,
## # is.referenced.by.count <chr>, title <chr>, type <chr>, url <chr>,
## # volume <chr>, short.container.title <chr>, author <list>, …
papers <- papers %>% dplyr::distinct()
dim(papers)
## [1] 2831 69
source_track <- c(source_track,
structure(rep("cleanup", length(setdiff(colnames(papers),
names(source_track)))),
names = setdiff(colnames(papers), names(source_track))))
In some cases, fetching information from (e.g.) the GitHub API fails for a subset of the publications. There are also other reasons for missing values (for example, the earliest submissions do not have an associated pre-review issue). The table below lists the number of missing values for each of the variables in the data frame.
DT::datatable(
data.frame(variable = colnames(papers),
nbr_missing = colSums(is.na(papers))) %>%
dplyr::mutate(source = source_track[variable]),
escape = FALSE, rownames = FALSE,
filter = list(position = 'top', clear = FALSE),
options = list(scrollX = TRUE)
)
monthly_pubs <- papers %>%
dplyr::mutate(pubmonth = lubridate::floor_date(published.date, "month")) %>%
dplyr::group_by(pubmonth) %>%
dplyr::summarize(npub = n())
ggplot(monthly_pubs,
aes(x = factor(pubmonth), y = npub)) +
geom_bar(stat = "identity") + theme_minimal() +
labs(x = "", y = "Number of published papers per month", caption = dcap) +
theme(axis.title = element_text(size = 15),
axis.text.x = element_text(angle = 90, hjust = 1, vjust = 0.5))
DT::datatable(
monthly_pubs %>%
dplyr::rename("Number of papers" = "npub",
"Month of publications" = "pubmonth"),
escape = FALSE, rownames = FALSE,
filter = list(position = 'top', clear = FALSE),
options = list(scrollX = TRUE)
)
yearly_pubs <- papers %>%
dplyr::mutate(pubyear = lubridate::year(published.date)) %>%
dplyr::group_by(pubyear) %>%
dplyr::summarize(npub = n())
ggplot(yearly_pubs,
aes(x = factor(pubyear), y = npub)) +
geom_bar(stat = "identity") + theme_minimal() +
labs(x = "", y = "Number of published papers per year", caption = dcap) +
theme(axis.title = element_text(size = 15),
axis.text.x = element_text(angle = 90, hjust = 1, vjust = 0.5))
DT::datatable(
yearly_pubs %>%
dplyr::rename("Number of papers" = "npub",
"Year of publications" = "pubyear"),
escape = FALSE, rownames = FALSE,
filter = list(position = 'top', clear = FALSE),
options = list(scrollX = TRUE)
)
The plots below illustrate the fraction of pre-review and review issues closed during each month that have the ‘rejected’ label attached.
ggplot(all_rejected,
aes(x = factor(closedmonth), y = nbr_rejections/nbr_issues_closed)) +
geom_bar(stat = "identity") +
theme_minimal() +
facet_wrap(~ itype, ncol = 1) +
labs(x = "Month of issue closing", y = "Fraction of issues rejected",
caption = dcap) +
theme(axis.title = element_text(size = 15),
axis.text.x = element_text(angle = 90, hjust = 1, vjust = 0.5))
Papers with 20 or more citations are grouped in the “>=20” category.
ggplot(papers %>%
dplyr::mutate(citation_count = replace(citation_count,
citation_count >= 20, ">=20")) %>%
dplyr::mutate(citation_count = factor(citation_count,
levels = c(0:20, ">=20"))) %>%
dplyr::group_by(citation_count) %>%
dplyr::tally(),
aes(x = citation_count, y = n)) +
geom_bar(stat = "identity") +
theme_minimal() +
labs(x = "OpenAlex citation count", y = "Number of publications", caption = dcap)
The table below sorts the JOSS papers in decreasing order by the number of citations in OpenAlex.
DT::datatable(
papers %>%
dplyr::mutate(url = paste0("<a href='", url, "' target='_blank'>",
url,"</a>")) %>%
dplyr::arrange(desc(citation_count)) %>%
dplyr::select(title, url, published.date, citation_count),
escape = FALSE,
filter = list(position = 'top', clear = FALSE),
options = list(scrollX = TRUE)
)
plotly::ggplotly(
ggplot(papers, aes(x = published.date, y = citation_count, label = title)) +
geom_point(alpha = 0.5) + theme_bw() + scale_y_sqrt() +
geom_smooth() +
labs(x = "Date of publication", y = "OpenAlex citation count", caption = dcap) +
theme(axis.title = element_text(size = 15)),
tooltip = c("label", "x", "y")
)
## Warning: Removed 2 rows containing non-finite outside the scale range
## (`stat_smooth()`).
## Warning: The following aesthetics were dropped during statistical transformation: label.
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
Here, we plot the citation count for all papers published within each half year, sorted in decreasing order.
ggplot(papers %>% dplyr::group_by(halfyear) %>%
dplyr::arrange(desc(citation_count)) %>%
dplyr::mutate(idx = seq_along(citation_count)),
aes(x = idx, y = citation_count)) +
geom_point(alpha = 0.5) +
facet_wrap(~ halfyear, scales = "free") +
theme_bw() +
labs(x = "Index", y = "OpenAlex citation count", caption = dcap)
## Warning: Removed 2 rows containing missing values or values outside the scale range
## (`geom_point()`).
In these plots we investigate whether the time a submission spends in the pre-review or review stage (or their sum) has changed over time. The blue curve corresponds to a rolling median for submissions over 120 days.
## Helper functions (modified from https://stackoverflow.com/questions/65147186/geom-smooth-with-median-instead-of-mean)
rolling_median <- function(formula, data, xwindow = 120, ...) {
## Get order of x-values and sort x/y
ordr <- order(data$x)
x <- data$x[ordr]
y <- data$y[ordr]
## Initialize vector for smoothed y-values
ys <- rep(NA, length(x))
## Calculate median y-value for each unique x-value
for (xs in setdiff(unique(x), NA)) {
## Get x-values in the window, and calculate median of corresponding y
j <- ((xs - xwindow/2) < x) & (x < (xs + xwindow/2))
ys[x == xs] <- median(y[j], na.rm = TRUE)
}
y <- ys
structure(list(x = x, y = y, f = approxfun(x, y)), class = "rollmed")
}
predict.rollmed <- function(mod, newdata, ...) {
setNames(mod$f(newdata$x), newdata$x)
}
ggplot(papers, aes(x = prerev_opened, y = as.numeric(days_in_pre))) +
geom_point() +
geom_smooth(formula = y ~ x, method = "rolling_median",
se = FALSE, method.args = list(xwindow = 120)) +
theme_bw() +
labs(x = "Date of pre-review opening", y = "Number of days in pre-review",
caption = dcap) +
theme(axis.title = element_text(size = 15))
ggplot(papers, aes(x = review_opened, y = as.numeric(days_in_rev))) +
geom_point() +
geom_smooth(formula = y ~ x, method = "rolling_median",
se = FALSE, method.args = list(xwindow = 120)) +
theme_bw() +
labs(x = "Date of review opening", y = "Number of days in review",
caption = dcap) +
theme(axis.title = element_text(size = 15))
ggplot(papers, aes(x = prerev_opened,
y = as.numeric(days_in_pre) + as.numeric(days_in_rev))) +
geom_point() +
geom_smooth(formula = y ~ x, method = "rolling_median",
se = FALSE, method.args = list(xwindow = 120)) +
theme_bw() +
labs(x = "Date of pre-review opening", y = "Number of days in pre-review + review",
caption = dcap) +
theme(axis.title = element_text(size = 15))
Next, we consider the languages used by the submissions, both as reported by JOSS and based on the information encoded in available GitHub repositories (for the latter, we also record the number of bytes of code written in each language). Note that a given submission can use multiple languages.
## Language information from JOSS
sspl <- strsplit(papers$languages, ",")
all_languages <- unique(unlist(sspl))
langs <- do.call(dplyr::bind_rows, lapply(all_languages, function(l) {
data.frame(language = l,
nbr_submissions_JOSS_API = sum(vapply(sspl, function(v) l %in% v, 0)))
}))
## Language information from GitHub software repos
a <- lapply(strsplit(papers$repo_languages_bytes, ","), function(w) strsplit(w, ":"))
a <- a[sapply(a, length) > 0]
langbytes <- as.data.frame(t(as.data.frame(a))) %>%
setNames(c("language", "bytes")) %>%
dplyr::mutate(bytes = as.numeric(bytes)) %>%
dplyr::filter(!is.na(language)) %>%
dplyr::group_by(language) %>%
dplyr::summarize(nbr_bytes_GitHub = sum(bytes),
nbr_repos_GitHub = length(bytes)) %>%
dplyr::arrange(desc(nbr_bytes_GitHub))
langs <- dplyr::full_join(langs, langbytes, by = "language")
ggplot(langs %>% dplyr::arrange(desc(nbr_submissions_JOSS_API)) %>%
dplyr::filter(nbr_submissions_JOSS_API > 10) %>%
dplyr::mutate(language = factor(language, levels = language)),
aes(x = language, y = nbr_submissions_JOSS_API)) +
geom_bar(stat = "identity") +
theme_bw() +
theme(axis.text.x = element_text(angle = 90, hjust = 1, vjust = 0.5)) +
labs(x = "", y = "Number of submissions", caption = dcap) +
theme(axis.title = element_text(size = 15))
DT::datatable(
langs %>% dplyr::arrange(desc(nbr_bytes_GitHub)),
escape = FALSE,
filter = list(position = 'top', clear = FALSE),
options = list(scrollX = TRUE)
)
ggplot(langs, aes(x = nbr_repos_GitHub, y = nbr_bytes_GitHub)) +
geom_point() + scale_x_log10() + scale_y_log10() + geom_smooth() +
theme_bw() +
labs(x = "Number of repos using the language",
y = "Total number of bytes of code\nwritten in the language",
caption = dcap) +
theme(axis.title = element_text(size = 15))
ggplotly(
ggplot(papers, aes(x = citation_count, y = repo_nbr_stars,
label = title)) +
geom_point(alpha = 0.5) + scale_x_sqrt() + scale_y_sqrt() +
theme_bw() +
labs(x = "OpenAlex citation count", y = "Number of stars, GitHub repo",
caption = dcap) +
theme(axis.title = element_text(size = 15)),
tooltip = c("label", "x", "y")
)
ggplot(papers, aes(x = as.numeric(prerev_opened - repo_created))) +
geom_histogram(bins = 50) +
theme_bw() +
labs(x = "Time (days) from repo creation to JOSS pre-review start",
caption = dcap) +
theme(axis.title = element_text(size = 15))
ggplot(papers, aes(x = as.numeric(repo_pushed - review_closed))) +
geom_histogram(bins = 50) +
theme_bw() +
labs(x = "Time (days) from closure of JOSS review to most recent commit in repo",
caption = dcap) +
theme(axis.title = element_text(size = 15)) +
facet_wrap(~ year(published.date), scales = "free_y")
Submissions associated with rOpenSci and pyOpenSci are not considered here, since they are not explicitly reviewed at JOSS.
ggplot(papers %>%
dplyr::filter(!grepl("rOpenSci|pyOpenSci", prerev_labels)) %>%
dplyr::mutate(year = year(published.date)),
aes(x = nbr_reviewers)) + geom_bar() +
facet_wrap(~ year) + theme_bw() +
labs(x = "Number of reviewers", y = "Number of submissions", caption = dcap)
Submissions associated with rOpenSci and pyOpenSci are not considered here, since they are not explicitly reviewed at JOSS.
reviewers <- papers %>%
dplyr::filter(!grepl("rOpenSci|pyOpenSci", prerev_labels)) %>%
dplyr::mutate(year = year(published.date)) %>%
dplyr::select(reviewers, year) %>%
tidyr::separate_rows(reviewers, sep = ",")
## Most active reviewers
DT::datatable(
reviewers %>% dplyr::group_by(reviewers) %>%
dplyr::summarize(nbr_reviews = length(year),
timespan = paste(unique(c(min(year), max(year))),
collapse = " - ")) %>%
dplyr::arrange(desc(nbr_reviews)),
escape = FALSE, rownames = FALSE,
filter = list(position = 'top', clear = FALSE),
options = list(scrollX = TRUE)
)
ggplot(papers %>%
dplyr::mutate(year = year(published.date),
`r/pyOpenSci` = factor(
grepl("rOpenSci|pyOpenSci", prerev_labels),
levels = c("TRUE", "FALSE"))),
aes(x = editor)) + geom_bar(aes(fill = `r/pyOpenSci`)) +
theme_bw() + facet_wrap(~ year, ncol = 1) +
scale_fill_manual(values = c(`TRUE` = "grey65", `FALSE` = "grey35")) +
theme(axis.text.x = element_text(angle = 90, hjust = 1, vjust = 0.5)) +
labs(x = "Editor", y = "Number of submissions", caption = dcap)
all_licenses <- sort(unique(papers$repo_license))
license_levels = c(grep("apache", all_licenses, value = TRUE),
grep("bsd", all_licenses, value = TRUE),
grep("mit", all_licenses, value = TRUE),
grep("gpl", all_licenses, value = TRUE),
grep("mpl", all_licenses, value = TRUE))
license_levels <- c(license_levels, setdiff(all_licenses, license_levels))
ggplot(papers %>%
dplyr::mutate(repo_license = factor(repo_license,
levels = license_levels)),
aes(x = repo_license)) +
geom_bar() +
theme_bw() +
labs(x = "Software license", y = "Number of submissions", caption = dcap) +
theme(axis.title = element_text(size = 15),
axis.text.x = element_text(angle = 90, hjust = 1, vjust = 0.5)) +
facet_wrap(~ year(published.date), scales = "free_y")
## For plots below, replace licenses present in less
## than 2.5% of the submissions by 'other'
tbl <- table(papers$repo_license)
to_replace <- names(tbl[tbl <= 0.025 * nrow(papers)])
ggplot(papers %>%
dplyr::mutate(year = year(published.date)) %>%
dplyr::mutate(repo_license = replace(repo_license,
repo_license %in% to_replace,
"other")) %>%
dplyr::mutate(year = factor(year),
repo_license = factor(
repo_license,
levels = license_levels[license_levels %in% repo_license]
)) %>%
dplyr::group_by(year, repo_license, .drop = FALSE) %>%
dplyr::count() %>%
dplyr::mutate(year = as.integer(as.character(year))),
aes(x = year, y = n, fill = repo_license)) + geom_area() +
theme_minimal() +
scale_fill_brewer(palette = "Set1", name = "Software\nlicense",
na.value = "grey") +
theme(axis.title = element_text(size = 15)) +
labs(x = "Year", y = "Number of submissions", caption = dcap)
ggplot(papers %>%
dplyr::mutate(year = year(published.date)) %>%
dplyr::mutate(repo_license = replace(repo_license,
repo_license %in% to_replace,
"other")) %>%
dplyr::mutate(year = factor(year),
repo_license = factor(
repo_license,
levels = license_levels[license_levels %in% repo_license]
)) %>%
dplyr::group_by(year, repo_license, .drop = FALSE) %>%
dplyr::summarize(n = n()) %>%
dplyr::mutate(freq = n/sum(n)) %>%
dplyr::mutate(year = as.integer(as.character(year))),
aes(x = year, y = freq, fill = repo_license)) + geom_area() +
theme_minimal() +
scale_fill_brewer(palette = "Set1", name = "Software\nlicense",
na.value = "grey") +
theme(axis.title = element_text(size = 15)) +
labs(x = "Year", y = "Fraction of submissions", caption = dcap)
a <- unlist(strsplit(papers$repo_topics, ","))
a <- a[!is.na(a)]
topicfreq <- table(a)
colors <- viridis::viridis(100)
set.seed(1234)
wordcloud::wordcloud(
names(topicfreq), sqrt(topicfreq), min.freq = 1, max.words = 300,
random.order = FALSE, rot.per = 0.05, use.r.layout = FALSE,
colors = colors, scale = c(10, 0.1), random.color = TRUE,
ordered.colors = FALSE, vfont = c("serif", "plain")
)
DT::datatable(as.data.frame(topicfreq) %>%
dplyr::rename(topic = a, nbr_repos = Freq) %>%
dplyr::arrange(desc(nbr_repos)),
escape = FALSE, rownames = FALSE,
filter = list(position = 'top', clear = FALSE),
options = list(scrollX = TRUE))
Here, we take a more detailed look at the papers that cite JOSS papers, using data from the Open Citations Corpus.
## Split into several queries
## Randomize the splitting since a whole query may fail if one ID is not recognized
papidx <- seq_len(nrow(papers))
idxL <- split(sample(papidx, length(papidx), replace = FALSE), ceiling(papidx / 50))
citationsL <- lapply(idxL, function(idx) {
tryCatch({
citecorp::oc_coci_cites(doi = papers$alternative.id[idx]) %>%
dplyr::distinct() %>%
dplyr::mutate(citation_info_obtained = as.character(lubridate::today()))
}, error = function(e) {
NULL
})
})
citationsL <- citationsL[vapply(citationsL, function(df) !is.null(df) && nrow(df) > 0, FALSE)]
if (length(citationsL) > 0) {
citations <- do.call(dplyr::bind_rows, citationsL)
} else {
citations <- NULL
}
dim(citations)
## [1] 39064 8
if (!is.null(citations) && is.data.frame(citations) && "oci" %in% colnames(citations)) {
citations <- citations %>%
dplyr::filter(!(oci %in% citations_archive$oci))
tmpj <- rcrossref::cr_works(dois = unique(citations$citing))$data %>%
dplyr::select(contains("doi"), contains("container.title"), contains("issn"),
contains("type"), contains("publisher"), contains("prefix"))
citations <- citations %>% dplyr::left_join(tmpj, by = c("citing" = "doi"))
## bioRxiv preprints don't have a 'container.title' or 'issn', but we'll assume
## that they can be
## identified from the prefix 10.1101 - set the container.title
## for these records manually; we may or may not want to count these
## (would it count citations twice, both preprint and publication?)
citations$container.title[citations$prefix == "10.1101"] <- "bioRxiv"
## JOSS is represented by 'The Journal of Open Source Software' as well as
## 'Journal of Open Source Software'
citations$container.title[citations$container.title ==
"Journal of Open Source Software"] <-
"The Journal of Open Source Software"
## Remove real self citations (cited DOI = citing DOI)
citations <- citations %>% dplyr::filter(cited != citing)
## Merge with the archive
citations <- dplyr::bind_rows(citations, citations_archive)
} else {
citations <- citations_archive
if (is.null(citations[["citation_info_obtained"]])) {
citations$citation_info_obtained <- NA_character_
}
}
citations$citation_info_obtained[is.na(citations$citation_info_obtained)] <-
"2021-08-11"
write.table(citations, file = "joss_submission_citations.tsv",
row.names = FALSE, col.names = TRUE, sep = "\t", quote = FALSE)
## Latest successful update of new citation data
max(as.Date(citations$citation_info_obtained))
## [1] "2024-07-31"
## Number of JOSS papers with >0 citations included in this collection
length(unique(citations$cited))
## [1] 1583
## Number of JOSS papers with >0 citations according to OpenAlex
length(which(papers$citation_count > 0))
## [1] 2105
## Number of citations from Open Citations Corpus vs OpenAlex
df0 <- papers %>% dplyr::select(doi, citation_count) %>%
dplyr::full_join(citations %>% dplyr::group_by(cited) %>%
dplyr::tally() %>%
dplyr::mutate(n = replace(n, is.na(n), 0)),
by = c("doi" = "cited"))
## Total citation count OpenAlex
sum(df0$citation_count, na.rm = TRUE)
## [1] 85833
## Total citation count Open Citations Corpus
sum(df0$n, na.rm = TRUE)
## [1] 76059
## Ratio of total citation count Open Citations Corpus/OpenAlex
sum(df0$n, na.rm = TRUE)/sum(df0$citation_count, na.rm = TRUE)
## [1] 0.8861277
ggplot(df0, aes(x = citation_count, y = n)) +
geom_abline(slope = 1, intercept = 0) +
geom_point(size = 3, alpha = 0.5) +
labs(x = "OpenAlex citation count", y = "Open Citations Corpus citation count",
caption = dcap) +
theme_bw()
## Zoom in
ggplot(df0, aes(x = citation_count, y = n)) +
geom_abline(slope = 1, intercept = 0) +
geom_point(size = 3, alpha = 0.5) +
labs(x = "OpenAlex citation count", y = "Open Citations Corpus citation count",
caption = dcap) +
theme_bw() +
coord_cartesian(xlim = c(0, 75), ylim = c(0, 75))
## Number of journals citing JOSS papers
length(unique(citations$container.title))
## [1] 8700
length(unique(citations$issn))
## [1] 6470
topcit <- citations %>% dplyr::group_by(container.title) %>%
dplyr::summarize(nbr_citations_of_joss_papers = length(cited),
nbr_cited_joss_papers = length(unique(cited)),
nbr_citing_papers = length(unique(citing)),
nbr_selfcitations_of_joss_papers = sum(author_sc == "yes"),
fraction_selfcitations = signif(nbr_selfcitations_of_joss_papers /
nbr_citations_of_joss_papers, digits = 3)) %>%
dplyr::arrange(desc(nbr_cited_joss_papers))
DT::datatable(topcit,
escape = FALSE, rownames = FALSE,
filter = list(position = 'top', clear = FALSE),
options = list(scrollX = TRUE))
plotly::ggplotly(
ggplot(topcit, aes(x = nbr_citations_of_joss_papers, y = nbr_cited_joss_papers,
label = container.title)) +
geom_abline(slope = 1, intercept = 0, linetype = "dashed", color = "grey") +
geom_point(size = 3, alpha = 0.5) +
theme_bw() +
labs(caption = dcap, x = "Number of citations of JOSS papers",
y = "Number of cited JOSS papers")
)
plotly::ggplotly(
ggplot(topcit, aes(x = nbr_citations_of_joss_papers, y = nbr_cited_joss_papers,
label = container.title)) +
geom_abline(slope = 1, intercept = 0, linetype = "dashed", color = "grey") +
geom_point(size = 3, alpha = 0.5) +
theme_bw() +
coord_cartesian(xlim = c(0, 100), ylim = c(0, 50)) +
labs(caption = dcap, x = "Number of citations of JOSS papers",
y = "Number of cited JOSS papers")
)
write.table(topcit, file = "joss_submission_citations_byjournal.tsv",
row.names = FALSE, col.names = TRUE, sep = "\t", quote = FALSE)
The tibble object with all data collected above is serialized to a file that can be downloaded and reused.
head(papers) %>% as.data.frame()
## alternative.id container.title created deposited
## 1 10.21105/joss.02583 Journal of Open Source Software 2020-09-26 2020-09-26
## 2 10.21105/joss.02013 Journal of Open Source Software 2020-02-10 2020-02-10
## 3 10.21105/joss.03917 Journal of Open Source Software 2021-12-02 2021-12-02
## 4 10.21105/joss.06110 Journal of Open Source Software 2024-03-05 2024-03-05
## 5 10.21105/joss.04859 Journal of Open Source Software 2022-11-27 2022-11-27
## 6 10.21105/joss.06156 Journal of Open Source Software 2024-03-28 2024-03-28
## published.print doi indexed issn issue issued
## 1 2020-09-26 10.21105/joss.02583 2022-03-28 2475-9066 53 2020-09-26
## 2 2020-02-10 10.21105/joss.02013 2023-05-19 2475-9066 46 2020-02-10
## 3 2021-12-02 10.21105/joss.03917 2022-03-30 2475-9066 68 2021-12-02
## 4 2024-03-05 10.21105/joss.06110 2024-03-06 2475-9066 95 2024-03-05
## 5 2022-11-27 10.21105/joss.04859 2024-03-06 2475-9066 79 2022-11-27
## 6 2024-03-28 10.21105/joss.06156 2024-03-29 2475-9066 95 2024-03-28
## member page prefix publisher score source reference.count
## 1 8722 2583 10.21105 The Open Journal 0 Crossref 28
## 2 8722 2013 10.21105 The Open Journal 0 Crossref 12
## 3 8722 3917 10.21105 The Open Journal 0 Crossref 34
## 4 8722 6110 10.21105 The Open Journal 0 Crossref 28
## 5 8722 4859 10.21105 The Open Journal 0 Crossref 18
## 6 8722 6156 10.21105 The Open Journal 0 Crossref 22
## references.count is.referenced.by.count
## 1 28 0
## 2 12 6
## 3 34 0
## 4 28 0
## 5 18 2
## 6 22 0
## title
## 1 emba: R package for analysis and visualization of biomarkers in boolean model ensembles
## 2 thresholdmodeling: A Python package for modeling excesses over a threshold using the Peak-Over-Threshold Method and the Generalized Pareto Distribution
## 3 CR-Sparse: Hardware accelerated functional algorithms for sparse signal processing in Python using JAX
## 4 PDOPT: A Python library for Probabilistic Design space\nexploration and OPTimisation
## 5 bmiptools: BioMaterials Image Processing Tools
## 6 simChef: High-quality data science simulations in\nR
## type url volume
## 1 journal-article https://doi.org/10.21105/joss.02583 5
## 2 journal-article https://doi.org/10.21105/joss.02013 5
## 3 journal-article https://doi.org/10.21105/joss.03917 6
## 4 journal-article https://doi.org/10.21105/joss.06110 9
## 5 journal-article https://doi.org/10.21105/joss.04859 7
## 6 journal-article https://doi.org/10.21105/joss.06156 9
## short.container.title
## 1 JOSS
## 2 JOSS
## 3 JOSS
## 4 JOSS
## 5 JOSS
## 6 JOSS
## author
## 1 http://orcid.org/0000-0002-3609-8674, http://orcid.org/0000-0002-1171-9876, http://orcid.org/0000-0002-3357-425X, FALSE, FALSE, FALSE, John, Martin, Åsmund, Zobolas, Kuiper, Flobak, first, additional, additional
## 2 http://orcid.org/0000-0002-5829-7711, http://orcid.org/0000-0003-0170-6083, http://orcid.org/0000-0002-8166-5666, FALSE, FALSE, FALSE, Iago, Antônio, Marcus, Lemos, Lima, Duarte, first, additional, additional
## 3 http://orcid.org/0000-0003-2217-4768, FALSE, Shailesh, Kumar, first
## 4 http://orcid.org/0000-0002-3064-3387, http://orcid.org/0000-0003-3392-283X, FALSE, FALSE, Andrea, Timoleon, Spinelli, Kipouros, first, additional
## 5 Luca, Richard, Luca, Curcuraci, Weinkamer, Bertinetti, first, additional, additional
## 6 http://orcid.org/0000-0003-3297-681X, http://orcid.org/0000-0002-8079-6867, http://orcid.org/0000-0001-7935-9945, http://orcid.org/0000-0002-4850-2507, http://orcid.org/0000-0002-8888-4060, FALSE, FALSE, FALSE, FALSE, FALSE, James, Tiffany, Corrine F., Philippe, Bin, Duncan, Tang, Elliott, Boileau, Yu, first, additional, additional, additional, additional
## citation_count openalex_id affil_countries_all
## 1 0 https://openalex.org/W3088617247 NO
## 2 10 https://openalex.org/W3005450240 BR
## 3 2 https://openalex.org/W4200596790 IN
## 4 0 https://openalex.org/W4392457007 GB
## 5 2 https://openalex.org/W4310006749 DE
## 6 2 https://openalex.org/W4393261317
## affil_countries_first
## 1 NO
## 2 BR
## 3 IN
## 4 GB
## 5 DE
## 6
## api_title
## 1 emba: R package for analysis and visualization of biomarkers in boolean model ensembles
## 2 thresholdmodeling: A Python package for modeling excesses over a threshold using the Peak-Over-Threshold Method and the Generalized Pareto Distribution
## 3 CR-Sparse: Hardware accelerated functional algorithms for sparse signal processing in Python using JAX
## 4 PDOPT: A Python library for Probabilistic Design space exploration and OPTimisation
## 5 bmiptools: BioMaterials Image Processing Tools
## 6 simChef: High-quality data science simulations in R
## api_state editor reviewers nbr_reviewers
## 1 accepted @mikldk @neerajdhanraj,@edifice1989 2
## 2 accepted @drvinceknight @bahung,@kellieotto 2
## 3 accepted @pdebuyl @Saran-nns,@mirca 2
## 4 accepted @kyleniemeyer @e-dub,@jbussemaker 2
## 5 accepted @AoifeHughes @taw10,@mooniean 2
## 6 accepted @Kevin-Mattheus-Moerman @rcannood,@Abinashbunty 2
## repo_url review_issue_id
## 1 https://github.com/bblodfon/emba 2583
## 2 https://github.com/iagolemos1/thresholdmodeling 2013
## 3 https://github.com/carnotresearch/cr-sparse 3917
## 4 https://github.com/spinjet/pdopt-code 6110
## 5 https://gitlab.mpikg.mpg.de/curcuraci/bmiptools 4859
## 6 https://github.com/Yu-Group/simChef 6156
## prereview_issue_id languages archive_doi
## 1 2534 R https://doi.org/10.5281/zenodo.4043085
## 2 1999 Python https://doi.org/10.5281/zenodo.3661338
## 3 3913 Python https://doi.org/10.5281/zenodo.5749792
## 4 6042 Python https://doi.org/10.5281/zenodo.10732017
## 5 4801 Python https://doi.org/10.5281/zenodo.7337808
## 6 5642 R,JavaScript https://doi.org/10.5281/zenodo.10845638
## review_title
## 1 emba: R package for analysis and visualization of biomarkers in boolean model ensembles
## 2 thresholdmodeling: A Python package for modeling excesses over a threshold using the Peak-Over-Threshold Method and the Generalized Pareto Distribution
## 3 CR-Sparse: Hardware accelerated functional algorithms for sparse signal processing in Python using JAX
## 4 PDOPT: A Python library for Probabilistic Design space exploration and OPTimisation.
## 5 bmiptools: BioMaterials Image Processing TOOLS
## 6 simChef: High-quality data science simulations in R
## review_number review_state review_opened review_closed review_ncomments
## 1 2583 closed 2020-08-19 2020-09-26 76
## 2 2013 closed 2020-01-13 2020-02-10 69
## 3 3917 closed 2021-11-16 2021-12-02 59
## 4 6110 closed 2023-12-01 2024-03-05 78
## 5 4859 closed 2022-10-17 2022-11-27 50
## 6 6156 closed 2023-12-18 2024-03-30 63
## review_labels
## 1 accepted,TeX,R,recommend-accept,published
## 2 accepted,recommend-accept,published
## 3 accepted,TeX,Shell,Python,recommend-accept,published
## 4 accepted,TeX,Python,published,Track: 3 (PE)
## 5 accepted,TeX,Python,recommend-accept,published,Track: 2 (BCM)
## 6 accepted,TeX,R,CSS,JavaScript,recommend-accept,published,Track: 5 (DSAIS)
## prerev_title
## 1 emba: R package for analysis and visualization of biomarkers in boolean model ensembles
## 2 thresholdmodeling: A Python package for modeling excesses over a threshold using the Peak-Over-Threshold Method and the Generalized Pareto Distribution
## 3 CR-Sparse: Hardware accelerated functional algorithms for sparse signal processing in Python using JAX
## 4 PDOPT: A Python library for Probabilistic Design space exploration and OPTimisation.
## 5 bmiptools: BioMaterials Image Processing TOOLS
## 6 simChef: High-quality data science simulations in R
## prerev_state prerev_opened prerev_closed prerev_ncomments
## 1 closed 2020-07-28 2020-08-19 32
## 2 closed 2020-01-07 2020-01-13 37
## 3 closed 2021-11-12 2021-11-16 29
## 4 closed 2023-11-09 2023-12-01 23
## 5 closed 2022-09-27 2022-10-17 38
## 6 closed 2023-07-10 2023-12-18 45
## prerev_labels days_in_pre days_in_rev to_review
## 1 TeX,R 22 days 38 days TRUE
## 2 TeX,Python 6 days 28 days TRUE
## 3 TeX,Shell,Python 4 days 16 days TRUE
## 4 TeX,Python,Track: 3 (PE) 22 days 95 days TRUE
## 5 TeX,Python,waitlisted,Track: 2 (BCM) 20 days 41 days TRUE
## 6 R,CSS,JavaScript,Track: 5 (DSAIS) 161 days 103 days TRUE
## repo_created repo_updated repo_pushed repo_nbr_stars repo_language
## 1 2019-06-03 2023-04-26 2023-04-26 0 R
## 2 2019-12-27 2024-08-15 2020-12-24 31 Python
## 3 2020-12-22 2025-01-09 2023-10-17 90 Jupyter Notebook
## 4 2022-07-19 2024-03-29 2024-06-18 3 Python
## 5 <NA> <NA> <NA> NA <NA>
## 6 2021-07-21 2025-01-07 2025-01-08 20 R
## repo_languages_bytes
## 1 R:211165,TeX:45603
## 2 Python:37812,TeX:3472
## 3 Jupyter Notebook:1232323,Python:632797,TeX:18209,Shell:187
## 4 Python:252392
## 5 <NA>
## 6 R:672918,TeX:6028,CSS:320,JavaScript:221
## repo_topics
## 1 r,r-package,biomarkers,ensemble-models
## 2
## 3 sparse-representations,jax,wavelets,convex-optimization,linear-operators,compressive-sensing,functional-programming,l1-regularization,sparse-linear-systems,lasso,sparse-bayesian-learning,basis-pursuit
## 4 design-space-exploration,multi-disciplinary,optimization,set-based-design
## 5 <NA>
## 6
## repo_license repo_nbr_contribs repo_nbr_contribs_2ormore repo_info_obtained
## 1 other 2 1 2025-01-15
## 2 lgpl-3.0 4 2 2025-01-15
## 3 apache-2.0 2 1 2025-01-15
## 4 mit 1 1 2025-01-15
## 5 <NA> NA NA <NA>
## 6 gpl-3.0 3 3 2025-01-15
## published.date halfyear nbr_authors
## 1 2020-09-26 2020H2 3
## 2 2020-02-10 2020H1 3
## 3 2021-12-02 2021H2 1
## 4 2024-03-05 2024H1 2
## 5 2022-11-27 2022H2 3
## 6 2024-03-28 2024H1 5
saveRDS(papers, file = "joss_submission_analytics.rds")
To read the current version of this file directly from GitHub, use the following code:
papers <- readRDS(gzcon(url("https://github.com/openjournals/joss-analytics/blob/gh-pages/joss_submission_analytics.rds?raw=true")))
sessionInfo()
## R version 4.4.2 (2024-10-31)
## Platform: aarch64-apple-darwin20
## Running under: macOS Sonoma 14.7.2
##
## Matrix products: default
## BLAS: /Library/Frameworks/R.framework/Versions/4.4-arm64/Resources/lib/libRblas.0.dylib
## LAPACK: /Library/Frameworks/R.framework/Versions/4.4-arm64/Resources/lib/libRlapack.dylib; LAPACK version 3.12.0
##
## locale:
## [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
##
## time zone: UTC
## tzcode source: internal
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] openalexR_1.4.0 stringr_1.5.1 gt_0.11.1 rworldmap_1.3-8
## [5] sp_2.1-4 readr_2.1.5 citecorp_0.3.0 plotly_4.10.4
## [9] DT_0.33 jsonlite_1.8.9 purrr_1.0.2 gh_1.4.1
## [13] lubridate_1.9.4 ggplot2_3.5.1 tidyr_1.3.1 dplyr_1.1.4
## [17] rcrossref_1.2.009 tibble_3.2.1
##
## loaded via a namespace (and not attached):
## [1] tidyselect_1.2.1 viridisLite_0.4.2 farver_2.1.2 viridis_0.6.5
## [5] urltools_1.7.3 fields_16.3 fastmap_1.2.0 lazyeval_0.2.2
## [9] promises_1.3.2 digest_0.6.37 dotCall64_1.2 timechange_0.3.0
## [13] mime_0.12 lifecycle_1.0.4 terra_1.8-10 magrittr_2.0.3
## [17] compiler_4.4.2 rlang_1.1.4 sass_0.4.9 tools_4.4.2
## [21] wordcloud_2.6 utf8_1.2.4 yaml_2.3.10 data.table_1.16.4
## [25] knitr_1.49 labeling_0.4.3 fauxpas_0.5.2 htmlwidgets_1.6.4
## [29] bit_4.5.0.1 curl_6.1.0 RColorBrewer_1.1-3 plyr_1.8.9
## [33] xml2_1.3.6 httpcode_0.3.0 miniUI_0.1.1.1 withr_3.0.2
## [37] triebeard_0.4.1 grid_4.4.2 xtable_1.8-4 colorspace_2.1-1
## [41] gitcreds_0.1.2 scales_1.3.0 crul_1.5.0 cli_3.6.3
## [45] rmarkdown_2.29 crayon_1.5.3 generics_0.1.3 httr_1.4.7
## [49] tzdb_0.4.0 cachem_1.1.0 splines_4.4.2 maps_3.4.2.1
## [53] parallel_4.4.2 vctrs_0.6.5 Matrix_1.7-1 hms_1.1.3
## [57] bit64_4.5.2 crosstalk_1.2.1 jquerylib_0.1.4 glue_1.8.0
## [61] spam_2.11-0 codetools_0.2-20 stringi_1.8.4 gtable_0.3.6
## [65] later_1.4.1 raster_3.6-30 munsell_0.5.1 pillar_1.10.1
## [69] rappdirs_0.3.3 htmltools_0.5.8.1 R6_2.5.1 httr2_1.0.7
## [73] vroom_1.6.5 evaluate_1.0.3 shiny_1.10.0 lattice_0.22-6
## [77] httpuv_1.6.15 bslib_0.8.0 Rcpp_1.0.14 gridExtra_2.3
## [81] nlme_3.1-166 mgcv_1.9-1 whisker_0.4.1 xfun_0.50
## [85] pkgconfig_2.0.3